Дифеоморфізм
Дифеоморфі́зм — взаємно однозначне і неперервно диференційовне відображення гладкого многовиду в гладкий многовид , обернене до якого теж є неперервно диференційовним. Зазвичай під гладкістю розуміють — гладкість, проте таким же чином можуть бути визначені дифеоморфізми з іншим типом гладкості, наприклад при будь-кому .
Пов'язані визначення
ред.Якщо для та існує дифеоморфізм, то говорять, що й дифеоморфні. Множина дифеоморфізмів многовиду у собі утворює групу, що позначається .
Приклади
ред.- Нехай . Матриця Якобі цього відображення дорівнює:
Її визначник дорівнює нулю тоді і тільки тоді коли . Тобто f є дифеоморфізмом за межами x-осі і y-осі.
Література
ред.- Пришляк О.О.. Диференціальна геометрія : Курс лекцій. – К.: Видавничо-поліграфічний центр «Київський університет», 2004. – 68 с.
- Милнор Дж., Уоллес А. Дифференциальная топология / Пер. с англ. — Москва: Мир, 1972. — 280 с.
- Ф.Уорнер Основы теории гладких многообразий и групп — Москва: Мир, 1987. — 302 с.