Логічна еквівалентність

бінарна операція алгебри логіки
(Перенаправлено з Еквівалентність)

Логічна еквівалентність (еквіваленція) — двомісна логічна операція, що має значення «істина» тоді і тільки тоді, коли обидва операнди мають однакове значення. В інших випадках еквіваленція буде хибною. Операція відображає вживання сполучника «тоді і тільки тоді» в логічних висловлюваннях.

EQ, XNOR
Venn diagram of
Визначення
Таблиця істинності
Логічний вентиль
Нормальні форми
Диз'юнктивна
Кон'юнктивна
Алгебрична
Ґратка Поста
(зберігає 0)
(зберігає 1)Green tickТак
(монотонна)
(лінійна)Green tickТак
(само-двоїста)

Еквівалентність позначають символами: , .
( , ).

Висловлення є правдивим тоді і тільки тоді, коли водночас правдиві обидві імплікації та , тобто:

.

У природній мові аналогами еквіваленції є вирази:

A тоді і тільки тоді, коли B
A якщо B і B якщо A
Для A достатньо і необхідно B
A матеріально еквівалентно B

Визначення

ред.

Таблиця істинності виглядає таким чином:

   
FFT
FTF
TFF
TTT

Ця таблиця відрізняється від таблиці істинності для імплікації другим рядком, а від таблиці істинності для конверсії імплікації  — третім рядком.

Також еквівалентність є запереченням виключної диз’юнкції, тобто

 
    
FFTF
FTFT
TFFT
TTTF

Оскільки імплікація виражає відношення між достатньою умовою та її наслідком, а конверсія імплікації  — між необхідною умовою та її наслідком, то еквіваленція або подвійна імплікація, виражає відношення між достатньою і необхідною умовою та її наслідком.

Наприклад, "Якщо він знає англійську мову, то він перекладе цей текст", "Якщо геометрична фігура квадрат, то її діагоналі діляться навпіл". Як у матеріальній імплікації сполучник "якщо, то ..." не виражає смислового зв'язку між антецедентом і консеквентом, так і в еквіваленції сполучник "якщо і тільки якщо" не виражає змістовно зв'язку між лівою і правою частинами еквівалентності; він виражає лише відношення між їх істинними значеннями ("істина", "хибність"). Ця особливість еквіваленції відіграє важливу роль для операцій із символами у логічних численнях.

Знання логічної еквіваленції дає можливість:

  • а) спростити запис послідовності висловлювань;
  • б) перейти від одного висловлювання до логічно еквівалентного йому (тобто, з тим самим істинним значенням);
  • в) замінити у послідовності формул одні формули на інші.

Властивості

ред.
 
 
 
 

Функціональна повнота

ред.

Множина операцій   є функціонально повною:

 
 
 

...

Дивись також

ред.

Джерела і посилання

ред.

Література

ред.