Задача про розорення гравця

Розорення гравця — термін, що застосовується для позначення кількох пов'язаних концепцій теорії ймовірностей, а саме:

  • гравець який піднімає ставку на фіксовану частку банкролу, коли виграє, та не зменшує ставку при програші, коли-небудь обов'язково розориться, навіть якщо математичне сподівання виграшу додатне.
  • гравець з обмеженим капіталом, що грає в чесну гру (в якій матсподівання виграшу для обох гравців нульове) коли-небудь програє проти гравця з необмеженим капіталом.
  • Попередній результат є висновком з однойменної теореми Гюйгенса. Теорема показує як обчислити ймовірність того, що один з гравців виграє послідовність ставок, яка триває доки в іншого гравця не закінчиться стек, якщо відомі стеки обох гравців, та ймовірність виграшу кожної ставки. І це напевне найстаріше математичне поняття відоме під цим ім'ям.
  • Найпоширеніше застосування цього терміна сьогодні — це очевидний факт того, що гравець, який грає в гру з від'ємним сподіванням виграшу, обов'язково програє, незалежно від того, яким чином він робитиме ставки. Це ще один висновок з теореми Гюйгенса про розорення гравця.

Теорема Гюйгенса про розорення гравця

ред.

Нехай у результаті кожного туру гри капітал гравця змінюється на одну копійку (±1). Гра закінчується при виконанні однієї із наступних умов: або гравець набирає капітал   копійок, або розорюється, тобто набирає 0 копійок. Знайти ймовірність розорення гравця.

Розв'язок

ред.

Нехай x — початковий капітал гравця. Тоді використавши формулу повної ймовірності, якісь різницеві рівняння та числові ряди, ми дізнаємось, що ймовірність розорення дорівнює

 

Джерела

ред.
  • Єжов С.М. (2001). Теорія ймовірностей, математична статистика і випадкові процеси: Навчальний посібник (PDF) (укр) . К.: ВПЦ "Київський університет". с. 25. Архів (PDF) оригіналу за 24 лютого 2007. Процитовано 19 червня 2010.
  • Gambler's ruin на сторінці mathpages.com