Кільце Коена — Маколея
У комутативній алгебрі кільцями Коена — Маколея називається клас комутативних кілець, що є зокрема важливим у алгебричній геометрії, завдяки властивостям локальної рівнорозмірності. Названі на честь англійського математика Френсіса Маколея і американського математика Ірвінга Коена.
Означення
ред.Комутативне локальне нетерове кільце називається кільцем Коена — Маколея, якщо його глибина дорівнює його розмірності .
Еквівалентне означення можна дати в термінах регулярної послідовності, тобто послідовності елементів де для всіх елемент не є дільником нуля у кільці . Локальне кільце називається кільцем Коена — Маколея, якщо існує регулярна послідовність для якої фактор-кільце є кільцем Артіна. Довжина цієї регулярної послідовності є рівною глибині кільця і його розмірності Круля.
Також кільця Коена — Маколея можна охарактеризувати тим, що групи і групи локальних когомологій рівні нулю для всіх , де — максимальний ідеал, a — поле лишків .
Нетерове кільце називається кільцем Коена — Маколея, якщо для будь-якого простого ідеалу локалізація кільця є кільцем Коена — Маколея. Аналогічно довільна схема називається схемою Коена — Маколея якщо для будь-якої точки локальне кільце у цій точці є кільцем Коена — Маколея.
Приклади
ред.- Регулярне локальне кільце (і, взагалі, будь-яке кільце Горенштейна) є кільцем Коена — Маколея;
- будь-яке артинове кільце;
- будь-яке одновимірне редуковане кільце;
- будь-яке двовимірне нормальне кільце є кільцем Коена — Маколея.
- Кільце многочленів або формальних степеневих рядів над полем чи над будь-яким кільцем Коена — Маколея.
Властивості
ред.- Якщо — простий ідеал в локальному кільці Коена — Маколея , то для його висоти виконується співвідношення
- Зокрема, локальне кільце Коена — Маколея є рівнорозмірним і ланцюговим.
- Одним із найважливіших результатів теорії кілець Коена — Маколея є теорема про незмішаність. Ця теорема була доведена Маколеєм для кільця многочленів і Коеном для кільця формальних степеневих рядів, що дало назву усьому класу кілець. Нехай — d-вимірне кільце Коена — Маколея, — послідовність елементів з для яких . Тоді ця послідовність є регулярною, і ідеал є незмішаним, тобто будь-який простий ідеал, асоційований з має висоту і ковисоту .
- Локальне кільце є кільцем Коена — Маколея тоді і тільки тоді коли кільцем Коена — Маколея є його поповнення;
- Якщо є локальним кільцем Коена — Маколея, то і кільце , де — регулярна послідовність, є кільцем Коена — Маколея;
- Локалізація локального кільця Коена — Маколея (в першому означенні) по простому ідеалу знову є кільцем Коена — Маколея. Ця властивість зокрема робить несуперечливим означення для довільних нетерових кілець.
- Кільце Коена — Маколея стабільні і при переході до кілець інваріантів. Якщо — скінченна група, що діє на кільці Коена — Маколея і її порядок є оборотним у , то кільце інваріантів є кільцем Коена — Маколея.
- Критерій Хіронаки. Нехай — локальне кільце, що є скінченнопородженим модулем над деяким регулярним локальним кільцем . Такі підкільця завжди існують, наприклад, для локалізації скінченнопородженої алгебри над полем по простому ідеалу (згідно нормалізаційної леми Нетер); вони також існують коли є повним кільцем, що містить поле або повною областю цілісності.[1] При цих умовах є кільцем Коена — Маколея тоді і тільки тоді коли воно є плоским A-модулем; еквівалентно, якщо є вільним A-модулем.[2]
- Нехай — елемент нетерового локального кільця , що не є дільником нуля і належить максимальному ідеалу. Тоді є кільцем Коена — Маколея тоді і тільки тоді коли є кільцем Коена — Маколея.[3]
Модулі Коена — Маколея
ред.Скінченнопороджений модуль над локальним нетеровим кільцем називається модулем Коена — Маколея, якщо його глибина дорівнює розмірності.
На модулі Коена — Маколея поширюються багато результатів про кільце Коена — Маколея. Наприклад, носій такого модуля є рівнорозмірним.
Для будь-якого асоційованого ідеалу виконується рівність Звідси випливає також, що кожен елемент є мінімальним і також елементом носія модуля.
У модулів Коена — Маколея кожна система параметрів є регулярною послідовністю. Системою параметрів називається послідовність елементів , які належать максимальному ідеалу кільця , де і модуль має скінченну довжину. Навпаки, якщо для кожна система параметрів є регулярною, то є модулем Коена — Маколея.
Якщо є R-модулем Коена — Маколея і — простий ідеал у , то локалізація є - модулем Коена — Маколея.
Існує гіпотеза, що для будь-якого повного локального кільця існує модуль Коена — Маколея такий, що .
Примітки
ред.Див. також
ред.Література
ред.- Bruns, Winfried; Herzog, Jürgen (1993), Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, т. 39, Cambridge University Press, ISBN 978-0-521-41068-7, MR 1251956
- Cohen, I. S. (1946), On the structure and ideal theory of complete local rings, Transactions of the American Mathematical Society, 59: 54—106, doi:10.2307/1990313, ISSN 0002-9947, JSTOR 1990313, MR 0016094
- V.I. Danilov (2001), ring Cohen–Macaulay ring, у Hazewinkel, Michiel (ред.), Математична енциклопедія, Springer, ISBN 978-1-55608-010-4
- Eisenbud, David (1995), Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, т. 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94268-1, MR 1322960
- Fulton, William (1993), Introduction to Toric Varieties, Princeton University Press, ISBN 978-0-691-00049-7, MR 1234037
- Kollár, János; Mori, Shigefumi (1998), Birational Geometry of Algebraic Varieties, Cambridge University Press, ISBN 0-521-63277-3, MR 1658959
- Kollár, János (2013), Singularities of the Minimal Model Program, Cambridge University Press, ISBN 978-1-107-03534-8, MR 3057950
- Macaulay, F.S. (1994) [1916], The Algebraic Theory of Modular Systems, Cambridge University Press, ISBN 1-4297-0441-1, MR 1281612, архів оригіналу за 3 березня 2016, процитовано 8 грудня 2017
- Matsumura, Hideyuki (1989), Commutative Ring Theory, Cambridge Studies in Advanced Mathematics (вид. 2nd), Cambridge University Press, ISBN 978-0-521-36764-6, MR 0879273