Незалежні однаково розподілені випадкові величини
У теорії імовірності, статистиці а також в економетриці, про набір випадкових величин кажуть, що вони незалежні і однаково-розподілені, якщо кожна з них має ту саму функцію розподілу (наприклад ), що і всі інші, і до того ж всі незалежні в сукупності. Вираз «незалежні і однаково розподілені» часто скорочують абревіатурою i.i.d. (від англ. independent and identically-distributed), а україномовній літературі як — «н.о.р.»[1]. Інколи, коли відомий розподіл випадкових величин, його також зазначають, наприклад ~ н.о.р. , означає, що маємо справу з незалежними і однаково-розподіленими випадковими величинами (в.в.), кожна з яких є розподілена за нормальним законом розподілу. Якщо відомі параметри даних випадкових величин (математичне сподівання, дисперсія), то їх також зазначають, наприклад ~ н.о.р. , позначає послідовність в.в. кожна з математичним сподіванням і дисперсією . Якщо відомі і розподіл і параметри, то їх також зазначають.
Застосування
ред.Припущення про те, що випадкові величини незалежні і однаково-розподілені широко використовується в теорії імовірності і статистиці, бо дозволяє сильно спростити теоретичні викладки і довести цікаві результати. Одна з ключових теорем теорії імовірності — центральна гранична теорема — стверджує, що якщо — послідовність незалежних однаково-розподілених в.в., то, при , розподіл їх середнього арифметичного — який також є випадковою величиною — збігається до стандартної нормальної випадкової величини.
У статистиці зазвичай припускають, що статистична вибірка є н.о.р. реалізацією деякої випадкової величини (така вибірка називається простою).
В економетриці є дуже важливим припущення про незалежність і однаково-розподіленість даних, які використовують для оцінки невідомих параметрів. Зокрема таке припущення вирішальне в теорії Узагальненого методу моментів.
Див. також
ред.Джерела
ред.- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
Примітки
ред.- ↑ Сеньо П. С. (2007). Теорія ймовірностей та математична статистика (вид. 2-ге, перероб. і доп.). Київ: Знання. с. 446.
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |