Парадокс Бертрана (теорія ймовірностей)

Парадокс Бертрана це задача в класичному означенні ймовірності. Джозеф Бертран вперше описав її в своїй праці Calcul des probabilités (1888) як приклад того, що ймовірність не може бути чітко означена, поки чітко не описаний механізм отримання випадковостей.

Парадокс Бертрана
Дата створення / заснування 1889
Зображення
Названо на честь Жозеф Бертран
Першовідкривач або винахідник Жозеф Бертран
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика
CMNS: Парадокс Бертрана у Вікісховищі

Для деякого кола випадковим чином обирається хорда. Знайти ймовірність того, що ця хорда довша за сторони правильного трикутника, вписаного в це коло. (Варіанти — довша за радіус, або знайти матсподівання її довжини). Парадокс стверджує, що ця ймовірність визначається неоднозначно залежно від методу.

Метод перший

Випадковим шляхом (рівномірно) в даному крузі обирається точка. Ця випадкова точка визначає єдину хорду, серединою якої вона є. Ця хорда довша за сторони нашого вписаного правильного трикутника тоді і тільки тоді, коли її середина лежить всередині кола, вписаного в трикутник. Радіус цього кола дорівнює половині радіуса вихідного кола, отже площа його становить 1/4 площі вихідного. Таким чином, ймовірність того, що випадково обрана точка лежить всередині вписаного кола, дорівнює 1/4. Отже, цей метод дає відповідь ¼.

Метод другий

Виходячи з міркувань симетрії, можна вважати, що одним кінцем хорди є фіксована точка на колі. Нехай цією точкою є вершина вписаного трикутника. Оберемо другий кінець випадково з рівномірним розподілом. Вершини трикутника ділять коло на три рівні дуги, і випадкова хорда довша за сторони правильного трикутника, якщо вона перетинає цей трикутник. Отже, шукана ймовірність тепер дорівнює .

Третій метод

Оберемо точку випадковим чином рівномірно на радіусі кола і візьмемо хорду, яка перпендикулярна цьому радіусу і проходить через обрану точку. Тоді випадкова хорда довша за сторони вписаного правильного трикутника, якщо випадкова точка лежить на тій половині радіусу, яка ближча до центра. Виходячи з міркувань симетрії, неважливо, який радіус був обраний для побудови, тому шукана ймовірність дорівнює ½.

Джерела

ред.
  • Г. Секей. «Парадоксы в теории вероятностей и математической статистике» М., Мир 1990.(рос.)