Побудова Вітгоффа

спосіб побудови однорідних многогранників або паркетів

Побудова Вітгоффа, або конструкція Вітгоффа[1] — метод побудови однорідних многогранників або мозаїк на площині. Метод названо за ім'ям математика В. А. Вітгоффа[en]. Часто метод побудови Вітгоффа називають калейдоскопною побудовою.

Побудови Вітгоффа з трьома дзеркалами, що утворюють прямокутний трикутник.

Побудова

ред.

Побудова ґрунтується на ідеї мозаїк на сфері з використанням сферичних трикутників — див. трикутники Шварца. Ця побудова використовує відбиття відносно сторін трикутника подібно до калейдоскопа. Проте, на відміну від калейдоскопа, відбиття не паралельні, а перетинаються в одній точці. Багаторазові відбиття утворюють кілька копій трикутника. Якщо кути сферичного трикутника вибрано правильно, трикутники покривають сферу мозаїкою один або більше разів.

Якщо помістити точку у відповідне місце всередині сферичного трикутника, оточеного дзеркалами, можна досягти, щоб відбиття цієї точки дали однорідний многогранник. Для сферичного трикутника ABC є чотири позиції, які дають однорідний многогранник:

  1. Точка розташована у вершині A. Вона дає многогранник зі символом Вітгоффа a|b c, де a дорівнює π, поділеному на кут трикутника при вершині A. Аналогічно для b і c.
  2. Точка розташована на відрізку AB в основі бісектриси кута при вершині C. Вона дає многогранник зі символом Вітгоффа a b|c.
  3. Точка розташована в інцентрі трикутника ABC. Вона дає многогранник зі символом Вітгоффа a b c|.
  4. Точка розташована так, що при обертанні її навколо вершин трикутника на подвоєний кут при цих вершинах вона переміщається на однакову відстань. Використовуються лише парні відбиття. Многогранник має символ Вітгоффа |a b c.

Процес, у загальному випадку, застосовується і для отримання правильних політопів у просторах вищих розмірностей, зокрема 4-вимірні однорідні політопи[en].

Приклади
 
 
Шестикутна призма будується як із сімейства (6 2 2), так і з сімейства (3 2 2).
  
Зрізана квадратна мозаїка[en] будується за допомогою двох різних позицій у сімействі (4 4 2).

Невітгоффова побудова

ред.

Однорідні многогранники, які не можна побудувати за допомогою дзеркальної побудови Вітгоффа, називають невітгоффовими. Їх, у загальному випадку, можна отримати з вітгоффових побудов або альтернацією[en] (видалення вершин через одну) або вставленням чергованих рядів деяких фігур. Обидва типи таких фігур мають обертальну симетрію. Іноді вважають вітгоффовими многогранники, отримані зрізанням вершин[ru], навіть якщо їх можна отримати альтернацією зрізаних з усіх боків фігур.

Приклади
 Шестикутна антипризма будується за допомогою альтернації дванадцятикутної призми[en].   Подовжена тикутна мозаїка[en] будується чергуванням рядків квадратної мозаїки і трикутної мозаїки.   Великий біромбоікосододекаедр[en] — єдиний невітгоффів однорідний многогранник.

Див. також

ред.

Примітки

ред.

Література

ред.

Посилання

ред.